Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yang Li, ${ }^{\text {a,b }}$ Xi-Quan Zhang, ${ }^{\text {b }}$
Xi-Chang Zhang, ${ }^{\text {b }}$ Xiang-Jian
Wang ${ }^{\text {b }}$ and Rui-Qin Fang ${ }^{\text {a }}$
${ }^{\text {a }}$ Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology,
Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\mathbf{b}}$ Jiangsu Chaitai Tianqing Pharmaceutical Co. Ltd, Nanjing 210093, People's Republic of China

Correspondence e-mail: fangrq326@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
Disorder in main residue
R factor $=0.064$
$w R$ factor $=0.207$
Data-to-parameter ratio $=23.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $\left[\mathrm{Co}_{2}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$, consists of a discrete dimeric $\mathrm{Co}^{\mathrm{II}}$ complex. The asymmetric unit consists of one pyrimidin-2-amine ligand, which occupies a general position, and one methanolate group, as well as one $\mathrm{Co}^{\text {II }}$ cation and one tetrafluoroborate anion, which are located in special positions. The $\mathrm{Co}^{\mathrm{II}}$ cation lies on a twofold rotation axis, whereas the tetrafluoroborate anion and the methanolate group lie on mirror planes. The N atoms of the pyrimidin-2amine ligand are involved in intermolecular hydrogen bonding. From this arrangement, large channels are formed, which elongate in the direction of the crystallographic c axis.

Comment

Cobalt complexes are of great interest in coordination chemistry in relation to catalysis and enzymatic reactions, magnetism, and molecular architectures (Billson et al., 2000; Fritsky et al., 2003; Kotera et al., 2003). Until recently, only a few cobalt complexes with pyrimidin-2-amine as ligand have been reported. In all of these compounds, the Co atom is coordinated by the N atom of the pyrimidine ring. Most of these compounds represent discrete mononuclear complexes (Kistenmacher et al., 1978; Masaki et al., 2002; Song et al., 2005) but in some of them the Co atoms are connected into polymers, $\left[\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{CO}_{2} \mathrm{~N}_{18}\right]_{n}$ (Jensen et al., 2000). To date, there is one dinuclear compound, $\left[\mathrm{C}_{8} \mathrm{H}_{22} \mathrm{Co}_{2} \mathrm{~N}_{6} \mathrm{O}_{14} \mathrm{~S}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]$, in which the two Co atoms are connected by two sulfate anions (Lumme et al., 1996). We report here the structure of another dinuclear Co compound with pyrimidin-2-amine, (I).

The structure of compound (I), is presented in Fig. 1. The Co atom lies on a twofold rotation axis, whereas the tetrafluoroborate anion and the methanolate group lie on mirror

[^0] All rights reserved

Di- μ_{2}-methanolato-bis[tetrakis(pyrimidin-2-amine$\left.\kappa N^{1}\right)$ cobalt(II)] bis(tetrafluoroborate)

Figure 1
Crystal structure of (I), with displacement ellipsoids drawn at the 30% probability level. Only one disorder component is shown. [Symmetry codes: (i) $-x, y,-z$; (ii) $-x,-y,-z$; (iii) $x,-y, z$.]

Figure 2
Packing diagram of (I), viewed along the c axis (hydrogen bonding is shown as dashed lines).
planes. The cobalt centres are four-coordinated by two O atoms of the methanolate group and two N atoms of two symmetry-related pyrimidin-2-amine ligands. The $\mathrm{Co}-\mathrm{O}$ bond lengths of 1.920 (2) \AA and the $\mathrm{Co}-\mathrm{N}$ bond lengths of 2.014 (3) A are comparable to those of similar Co complexes. The cis-angles at the $\mathrm{Co}^{\text {II }}$ centre range from 79.86 (17) to $95.33(14)^{\circ}$, which indicates a slightly distorted square geometry of Co atoms. Two Co atoms are connected by two methanolate groups via $\mu-O, O^{\prime}$ coordination into dimers, which are located on site $2 / \mathrm{m}$. The tetrafluoroborate anions are located $3.4471 \AA$ above the plane formed by the two Co
and the two O atoms. The complexes are connected via $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonding. From this arrangement, large channels are formed, which elongate in the direction of the c axis (Fig. 2). The channel volume was calculated using PLATON (Spek, 2003) to be 41.8% of the unit-cell volume.

Experimental

All chemicals were of AR grade. $\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{mmol}$, 49.8 mg) and pyrimidin-2-amine ($0.2 \mathrm{mmol}, 37.6 \mathrm{mg}$) were dissolved in methanol (20 ml). A solution of sodium fluoroborate $(0.1 \mathrm{mmol}$, $10.9 \mathrm{mg})$ in water (3 ml) was then added. The mixture was stirred for 30 min at 353 K and the remaining solid was filtered off. After slow evaporation of the solvent from the filtrate red block-shaped crystals of (I) grew within 10 d . Analysis found: C 29.23 , H 3.62, N 22.85%; calculated for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~B}_{2} \mathrm{Co}_{2} \mathrm{~F}_{8} \mathrm{~N}_{12} \mathrm{O}_{2}$: C 29.46, H 3.57, N 22.90%.

Crystal data

$\left[\mathrm{Co}_{2}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$
$M_{r}=733.99$
Monoclinic, $\mathrm{C} 2 / \mathrm{m}$
$a=16.338$ (6) A
$b=14.704$ (2) \AA
$c=12.040$ (4) \AA
$\beta=132.34$ (1) ${ }^{\circ}$
$V=2138.0(11) \AA^{3}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.775, T_{\text {max }}=0.850$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.140 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }^{\mu=0.84 \mathrm{~mm}^{-1}} \\
& T=293(2) \mathrm{K} \\
& \text { Block, red } \\
& 0.32 \times 0.28 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.207$
$S=1.11$
2541 reflections
109 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1252 P)^{2}\right. \\
& \quad+2.7158 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.86 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.60 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{NB}^{\text {iv }}$	0.90	2.10	$3.001(6)$	176
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~F}^{v}$	0.90	2.15	$3.022(6)$	163
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~F}^{\mathrm{vi}}$	0.90	2.40	$3.091(6)$	134

Symmetry codes: (iv) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (v) $-x, y,-z+1 ;$ (vi) $-x,-y,-z+1$.

All C-bound H atoms were placed in idealized positions and were refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms, and $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms. The N -bound H atoms were located in a difference map, their bond lengths were set to $0.90 \AA$ and they were refined using a riding model $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{N})\right]$. The methyl H
atoms are disordered due to symmetry; site occupancy factors are 0.5 . There are no indications that the channels are filled with solvent molecules.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

References

Billson, T. S., Crane, J. D., Fox, O. D. \& Heath, S. L. (2000). Inorg. Chem. Соттип. 3, 718-720.
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Fritsky, I. O., Ott, R., Pritzkow, H. \& Krämer, R. (2003). Inorg. Chim. Acta, 346, 111-118.
Jensen, P., Batten, S. R., Moubaraki, B. \& Murray, K. S. (2000). Chem. Commun. pp. 793-794.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5139. Oak Ridge National Laboratory, Tennessee, USA.
Kistenmacher, T. J., Sorrell, T., Rossi, M., Chiang, C. C. \& Marzilli, L. G. (1978). Inorg. Chem. 17, 479-481.

Kotera, T., Fujita, A., Mikuriya, M., Tsutsumi, H. \& Handa, M. (2003). Inorg. Chem. Commun. 6, 322-324.
Lumme, P. O., Knuuttila, H. \& Lindell, E. (1996). Acta Cryst. C52, 51-56.
Masaki, M. E., Prince, B. J. \& Turnbull, M. M. (2002). J. Coord. Chem. 55, 1337-1551.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Song, Y., Massera, C., van Albada, G. A., Lanfredi, A. M. M. \& Reedijk, J. (2005). J. Mol. Struct. 734, 83-89.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography

